36 research outputs found

    Inference in supervised spectral classifiers for on-board hyperspectral imaging: An overview

    Get PDF
    Machine learning techniques are widely used for pixel-wise classification of hyperspectral images. These methods can achieve high accuracy, but most of them are computationally intensive models. This poses a problem for their implementation in low-power and embedded systems intended for on-board processing, in which energy consumption and model size are as important as accuracy. With a focus on embedded anci on-board systems (in which only the inference step is performed after an off-line training process), in this paper we provide a comprehensive overview of the inference properties of the most relevant techniques for hyperspectral image classification. For this purpose, we compare the size of the trained models and the operations required during the inference step (which are directly related to the hardware and energy requirements). Our goal is to search for appropriate trade-offs between on-board implementation (such as model size anci energy consumption) anci classification accuracy

    GPU Parallel Implementation of Dual-Depth Sparse Probabilistic Latent Semantic Analysis for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing (HU) is an important task for remotely sensed hyperspectral (HS) data exploitation. It comprises the identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube. Several methods have been developed for (semi-) supervised and automatic identification of endmembers and abundances. Recently, the statistical dual-depth sparse probabilistic latent semantic analysis (DEpLSA) method has been developed to tackle the HU problem as a latent topic-based approach in which both endmembers and abundances can be simultaneously estimated according to the semantics encapsulated by the latent topic space. However, statistical models usually lead to computationally demanding algorithms and the computational time of the DEpLSA is often too high for practical use, in particular, when the dimensionality of the HS data cube is large. In order to mitigate this limitation, this article resorts to graphical processing units (GPUs) to provide a new parallel version of the DEpLSA, developed using the NVidia compute device unified architecture. Our experimental results, conducted using four well-known HS datasets and two different GPU architectures (GTX 1080 and Tesla P100), show that our parallel versions of the DEpLSA and the traditional pLSA approach can provide accurate HU results fast enough for practical use, accelerating the corresponding serial versions in at least 30x in the GTX 1080 and up to 147x in the Tesla P100 GPU, which are quite significant acceleration factors that increase with the image size, thus allowing for the possibility of the fast processing of massive HS data repositories

    GPU-friendly neural networks for remote sensing scene classification

    Get PDF
    Convolutional neural networks (CNNs) have proven to be very efficient for the analysis of remote sensing (RS) images. Due to the inherent complexity of extracting features from these images, along with the increasing amount of data to be processed (and the diversity of applications), there is a clear tendency to develop and employ increasingly deep and complex CNNs. In this regard, graphics processing units (GPUs) are frequently used to optimize their execution, both for the training and inference stages, optimizing the performance of neural models through their many-core architecture. Hence, the efficient use of the GPU resources should be at the core of optimizations. This letter analyzes the possibilities of using a new family of CNNs, denoted as TResNets, to provide an efficient solution to the RS scene classification problem. Moreover, the considered models have been combined with mixed precision to enhance their training performance. Our experimental results, conducted over three publicly available RS data sets, show that the proposed networks achieve better accuracy and more efficient use of GPU resources than other state-of-the-art networks. Source code is available at https://github.com/mhaut/GPUfriendlyRS

    Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral-spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral-spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral-spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods

    Low-High-Power Consumption Architectures for Deep-Learning Models Applied to Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks have emerged as an excellent tool for remotely sensed hyperspectral image (HSI) classification. Nonetheless, the high computational complexity and energy requirements of these models typically limit their application in on-board remote sensing scenarios. In this context, low-power consumption architectures are promising platforms that may provide acceptable on-board computing capabilities to achieve satisfactory classification results with reduced energy demand. For instance, the new NVIDIA Jetson Tegra TX2 device is an efficient solution for on-board processing applications using deep-learning (DL) approaches. So far, very few efforts have been devoted to exploiting this or other similar computing platforms in on-board remote sensing procedures. This letter explores the use of low-power consumption architectures and DL algorithms for HSI classification. The conducted experimental study reveals that the NVIDIA Jetson Tegra TX2 device offers a good choice in terms of performance, cost, and energy consumption for on-board HSI classification tasks

    A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution

    Get PDF
    Super-resolution (SR) brings an excellent opportunity to improve a wide range of different remote sensing applications. SR techniques are concerned about increasing the image resolution while providing finer spatial details than those captured by the original acquisition instrument. Therefore, SR techniques are particularly useful to cope with the increasing demand remote sensing imaging applications requiring fine spatial resolution. Even though different machine learning paradigms have been successfully applied in SR, more research is required to improve the SR process without the need of external high-resolution (HR) training examples. This paper proposes a new convolutional generator model to super-resolve low-resolution (LR) remote sensing data from an unsupervised perspective. That is, the proposed generative network is able to initially learn relationships between the LR and HR domains throughout several convolutional, downsampling, batch normalization, and activation layers. Then, the data are symmetrically projected to the target resolution while guaranteeing a reconstruction constraint over the LR input image. An experimental comparison is conducted using 12 different unsupervised SR methods over different test images. Our experiments reveal the potential of the proposed approach to improve the resolution of remote sensing imagery

    Multimodal Probabilistic Latent Semantic Analysis for Sentinel-1 and Sentinel-2 Image Fusion

    Get PDF
    Probabilistic topic models have recently shown a great potential in the remote sensing image fusion field, which is particularly helpful in land-cover categorization tasks. This letter first studies the application of probabilistic latent semantic analysis (pLSA) and latent Dirichlet allocation to remote sensing synthetic aperture radar (SAR) and multispectral imaging (MSI) unsupervised land-cover categorization. Then, a novel pLSA-based image fusion approach is presented, which pursues to uncover multimodal feature patterns from SAR and MSI data in order to effectively fuse and categorize Sentinel-1 and Sentinel-2 remotely sensed data. Experiments conducted over two different data sets reveal the advantages of the proposed approach for unsupervised land-cover categorization tasks

    Remote Sensing Single-Image Superresolution Based on a Deep Compendium Model

    Get PDF
    This letter introduces a novel remote sensing single-image superresolution (SR) architecture based on a deep efficient compendium model. The current deep learning-based SR trend stands for using deeper networks to improve the performance. However, this practice often results in the degradation of visual results. To address this issue, the proposed approach harmonizes several different improvements on the network design to achieve state-of-the-art performance when superresolving remote sensing imagery. On the one hand, the proposal combines residual units and skip connections to extract more informative features on both local and global image areas. On the other hand, it makes use of parallelized 1x1 convolutional filters (network in network) to reconstruct the superresolved result while reducing the information loss through the network. Our experiments, conducted using seven different SR methods over the well-known UC Merced remote sensing data set, and two additional GaoFen-2 test images, show that the proposed model is able to provide competitive advantages

    Capsule Networks for Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks (CNNs) have recently exhibited an excellent performance in hyperspectral image classification tasks. However, the straightforward CNN-based network architecture still finds obstacles when effectively exploiting the relationships between hyperspectral imaging (HSI) features in the spectral-spatial domain, which is a key factor to deal with the high level of complexity present in remotely sensed HSI data. Despite the fact that deeper architectures try to mitigate these limitations, they also find challenges with the convergence of the network parameters, which eventually limit the classification performance under highly demanding scenarios. In this paper, we propose a new CNN architecture based on spectral-spatial capsule networks in order to achieve a highly accurate classification of HSIs while significantly reducing the network design complexity. Specifically, based on Hinton's capsule networks, we develop a CNN model extension that redefines the concept of capsule units to become spectral-spatial units specialized in classifying remotely sensed HSI data. The proposed model is composed by several building blocks, called spectral-spatial capsules, which are able to learn HSI spectral-spatial features considering their corresponding spatial positions in the scene, their associated spectral signatures, and also their possible transformations. Our experiments, conducted using five well-known HSI data sets and several state-of-the-art classification methods, reveal that our HSI classification approach based on spectral-spatial capsules is able to provide competitive advantages in terms of both classification accuracy and computational time

    Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral-spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral-spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral-spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods
    corecore